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Abstract

In this paper, the relationship between Legendre polynomials and some special

cases of the 3-parameter Mittag-Leffler function is discussed. The generalization of

the relationship between 3-parameter Mittag-Leffler function and Legendre

polynomials also is discussed by using some properties of Legendre𝑃
𝑛
(𝑥)

polynomials.
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1- Introduction

Legendre Polynomials were introduced by Adrien Marie Legendre in 1782 [1],

these polynomials have many properties; the most important property of Legendre

polynomials is orthogonality of these polynomials. Legendre polynomials have

many physical applications and Legendre differential equation is a very important

ordinary differential equation in engineering and physics [2].

2- The problem and objective:

Many researchers have studied Legendre polynomials and their applications in

many fields. This study aims to determine the relationship between Legendre
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polynomials and fractional calculus and some special cases of Mittag-Leffler

functions.

3- The hypothesis:

This paper hypothesizes that there are strong relationships between 3-parameter

Mittag-Leffler function and Legendre polynomials.

Legendre polynomials:

Legendre polynomial is written as𝑃
𝑛
(𝑥)

𝑃
𝑛

𝑥( ) =  1

2𝑛
𝑟=0

𝑘

∑ (−1)𝑟  2𝑛−2𝑟 ( )! 𝑥𝑛−2𝑟

 𝑟! 𝑛−2𝑟( )!(𝑛−𝑟)!                                  (1)

𝑘 =  [ 𝑛
2  ,     𝑖𝑓  𝑛  𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟     𝑛−1

2  ,     𝑖𝑓  𝑛  𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟                                      

We have another representation of Legendre polynomial called Rodrigues𝑃
𝑛
(𝑥)

formula, it is written as

𝑃
𝑛

𝑥( ) =  1

2𝑛 𝑛! 
 𝑑𝑛

𝑑𝑥𝑛   𝑥2 − 1 [ ]
𝑛
                                            (3)

Recursive formulas of Legendre polynomials are

1) 𝑛 + 1( ) 𝑃
𝑛+1

𝑥( ) −  2𝑛 + 1( ) 𝑥 𝑃
𝑛

𝑥( ) + 𝑛 𝑃
𝑛−1

𝑥( ) = 0                     (4)

2)  𝑃
𝑛+1
/ 𝑥( ) −  𝑥 𝑃

𝑛
/ 𝑥( ) = 𝑛 + 1( ) 𝑃

𝑛
𝑥( )                                                     (5)
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We can prove previous formulas from equation . (1)

We have a strong relation between Legendre polynomials and fractional calculus,

especially the 3-parameter Mittag-Leffler function.

This paper is structured as follows: Section 2 represents the 3-parameter

Mittag-Leffler function and some special cases and discusses the relationship

between these cases and some Legendre polynomials. In section 3 we will show

how to generalize representation of Legendre polynomials as functions of some

special cases of 3-parameter Mittag-Leffler function.

Some Special cases of 3-parameter Mittag-Leffler Function:

Gustaf Mittag-Leffler introduced the Mittag-Leffler functions in the beginning of

twentieth century [3-18]. The basic Mittag-Leffler function is written as

𝐸
α

𝑦( ) =  
𝑗=0

∞

∑ 𝑦𝑗

Γ(1+α𝑗)                                                        (6)

if , we get the expansion of exponential functionα = 1

𝐸
1

𝑦( ) =  
𝑗=0

∞

∑ 𝑦𝑗

Γ(1+𝑗) =  
𝑗=0

∞

∑ 𝑦𝑗

𝑗! =  𝑒𝑦                                  (7)

We have another types of Mittag-Leffler functions, and second type in 2-parameter

Mittag-Leffler function is written as
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𝐸
α,β

𝑦( ) =  
𝑗=0

∞

∑ 𝑦𝑗

Γ(β+α𝑗)                                                     (8)

if , we get the basic Mittag-Leffler function.β = 1

Third type of Mittag-Leffler functions is 3-parameter Mittag-Leffler function, it is

written as

𝐸γ
α,β

𝑦( ) =  
𝑗=0

∞

∑ Γ γ+𝑗( ) 𝑦𝑗

𝑗! Γ(γ)Γ(β+α𝑗)                                          (9)

if , we get 2-parameter Mittag-Leffler functionγ = 1

𝐸1
α,β

𝑦( ) =  
𝑗=0

∞

∑ Γ 1+𝑗( ) 𝑦𝑗

𝑗! Γ 1( )Γ β+α𝑗( ) =
𝑗=0

∞

∑ 𝑗! 𝑦𝑗

𝑗!Γ β+α𝑗( )

=
𝑗=0

∞

∑  𝑦𝑗

Γ(β+α𝑗) =  𝐸
α,β

𝑦( )                                              (10)

We can find more special cases of 3-parameter Mittag-Leffler function, we can let

, and in equation , we getα =− 2 β = 3 γ = −3
2  (9)

𝐸
−3
2

−2,3
𝑦( ) =  

𝑗=0

∞

∑
Γ −3

2 +𝑗( ) 𝑦( )𝑗

𝑗! Γ −3
2( ) Γ 3−2𝑗( )

                             (11)

if , we get𝑦 =  𝑥2
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𝐸
−3
2

−2,3
𝑥2( ) =  

𝑗=0

∞

∑
Γ −3

2 +𝑗( ) 𝑥2( )
𝑗

𝑗! Γ −3
2( ) Γ 3−2𝑗( )

=  
Γ −3

2 +0( ) 𝑥2( )
0

0! Γ −3
2( ) Γ 3−2(0)( )

+  
Γ −3

2 +1( ) 𝑥2( )
1

1! Γ −3
2( ) Γ 3−2(1)( )

+ 0 + 0 + …

=  1
Γ 3( ) +

−3
2  Γ −3

2( )  𝑥2

Γ −3
2( ) Γ 1( )

=  1
2! −  3

2  𝑥2

0!  

                       =  1
2 −  3

2  𝑥2                                                                                   (12)

We can substitute in equation , we get𝑛 = 2 (1)

𝑃
2

𝑥( ) =  1

22
𝑟=0

2
2

∑ −1( )𝑟  2 2( )−2𝑟 ( )! 𝑥2−2𝑟

 𝑟! 2−2𝑟( )! 2−𝑟( )!

= (−1)0 4 −2(0) ( )! 𝑥2−2(0)

4   0! 2−2(0)( )!(2−0)! + (−1)1  4−2(1) ( )! 𝑥2−2(1)

4   1! 2−2(1)( )!(2−1)!

=   4! 𝑥2

4   2!  2!  −  2!
4   0!  1! =   4×3×2×1   𝑥2

4  × 2×1×  2×1  −  2×1
4      

=  3
2  𝑥2 −  1

2                                                                                                   (13)

Also we can substitute in equation , we get the same result in equation𝑛 = 2 (3)

(13)

𝑃
2

𝑥( ) =  1

22 2! 
 𝑑2

𝑑𝑥2   𝑥2 − 1 [ ]
2

=  1
8  𝑑

𝑑𝑥  4 𝑥  𝑥2 −  1 ( ) [ ]
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=  1
8   12 𝑥2 −  4 ( ) =  3

2  𝑥2 −  1
2                                                (14)

From and or and , we get(12) (13) (12) (14)

𝑃
2

𝑥( ) =− 𝐸
−3
2

−2,3
𝑥2( )                                                   (15)

Similarly, we can find the relationship between and , by putting𝑃
1

𝑥( ) 𝐸
−1
2

−2,1
𝑥( )

, and in equation , we getα =− 2 β = 1 γ = −1
2 (9)

𝐸
−1
2

−2,1
𝑥( ) =  

𝑗=0

∞

∑
Γ −1

2 +𝑗( ) 𝑥( )𝑗

𝑗! Γ −1
2( ) Γ 1−2𝑗( )

=  
Γ −1

2 +0( ) 𝑥( )0

0! Γ −1
2( ) Γ 1−2(0)( )

+ 0 + 0 + …

=  1
Γ 1( ) =  1

0! = 1                                                                      (16)

Now, by substituting in equation , we get𝑛 = 1 (1)

𝑃
1

𝑥( ) =  1

21
𝑟=0

1−1
2

∑ (−1)𝑟  2(1)−2𝑟 ( )! 𝑥1−2𝑟

 𝑟! 1−2𝑟( )!(1−𝑟)!

= −1( )0  2−2(0) ( )! 𝑥1−2(0)

2   0! 1−2(0)( )! 1−0( )! =  2!
2 𝑥 = 𝑥                (17)
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Also we can substitute in equation , we get the same result in equation𝑛 = 1  (3)

(17)

𝑃
1

𝑥( ) =  1

21 1! 
 𝑑

𝑑𝑥   𝑥2 − 1 [ ]
1

=  1
2  ×2𝑥 = 𝑥                  (18)

From and or and , we get(16) (17) (16) (18)

𝑃
1

𝑥( ) = 𝑥 𝐸
−1
2

−2,1
𝑥( )                                                   (19)

By putting in equation , we get𝑛 = 0 (1)

𝑃
0

𝑥( ) =  1

20
𝑟=0

0
2

∑ −1( )𝑟  2 0( )−2𝑟 ( )! 𝑥0−2𝑟

 𝑟! 0−2𝑟( )! 0−𝑟( )!

=  (−1)0  2(0)−2(0) ( )! 𝑥0−2(0)

 0! 0−2(0)( )!(0−0)! = 1                       (20)

Also, we can substitute in equation , we get𝑛 = 0 (3)

𝑃
0

𝑥( ) =  1

20 1! 
   𝑥2 − 1 [ ]

0
=  1                                (21)

From and or and , we get(16) (20) (16)  (21)

𝑃
0

𝑥( ) =  𝐸
−1
2

−2,1
𝑥( )                                                   (22)
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Representation of Legendre Polynomials as terms of Some Special

Cases of 3-parameter Mittag-Leffler Function.

In previous section we got the relationship between 𝑃
0

𝑥( )   ,    𝑃
1

𝑥( )   ,    𝑃
2

𝑥( )

and some special cases of 3-parameter Mittag-Leffler function. Now, we have very

important question “What is the relationship between 3-parameter Mittag-Leffler

function and in general? “, to answer this question we will discuss𝑃
𝑛

𝑥( )  ,    ∀𝑛∈𝑁

the relationship between from equation , by𝑃
𝑛

𝑥( )   ,    𝑃
𝑛+1

𝑥( )   𝑎𝑛𝑑   𝑃
𝑛−1

𝑥( )  4( )

putting , we get= 1

1 + 1( ) 𝑃
1+1

𝑥( ) −  2 1( ) + 1( ) 𝑥 𝑃
1

𝑥( ) + (1) 𝑃
1−1

𝑥( ) =

2 𝑃
2

𝑥( ) −  3 𝑥 𝑃
1

𝑥( ) +  𝑃
0

𝑥( ) = 0          (23)

From and , the equation becomes15( )  ,    (19) (22)   (23)

− 2𝐸
−3
2

−2,3
𝑥2( ) −  3 𝑥 𝑥 𝐸

−1
2

−2,1
𝑥( )( ) +  𝐸

−1
2

−2,1
𝑥( ) = 0          (24)

then

𝐸
−3
2

−2,3
𝑥2( ) =  1

2   1 − 3 𝑥2 ( )𝐸
−1
2

−2,1
(𝑥)                          (25)

By putting , we get𝑛 = 2 𝑖𝑛  (4)
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    2 + 1( ) 𝑃
2+1

𝑥( ) −  2 2( ) + 1( ) 𝑥 𝑃
2

𝑥( ) + (2) 𝑃
2−1

𝑥( ) =

3 𝑃
3

𝑥( ) −  5 𝑥 𝑃
2

𝑥( ) +  2𝑃
1

𝑥( ) = 0                                       (26)

then

𝑃
3

𝑥( ) =  −  1
3   2𝑃

1
𝑥( ) −  5 𝑥 𝑃

2
𝑥( ) ( )                    (27)

From , and , the equation becomes15( )  ,    (19) (22) (25)  (27)

                        𝑃
3

𝑥( ) =  −  1
3   2𝑥𝐸

−1
2

−2,1
(𝑥) +  5 𝑥  1

2   1 − 3 𝑥2 ( )𝐸
−1
2

−2,1
(𝑥) ( ) ( )

=  −  1
3   2𝑥 +  5 𝑥

2 −  15
2  𝑥3 ( )𝐸

−1
2

−2,1
𝑥( )

=    5
2  𝑥3 − 3 𝑥

2  ( )𝐸
−1
2

−2,1
𝑥( )                                                  (28)

4- Results and Discussion:

This section generalizes the relationship between 3-parameter Mittag-Leffler

function and Legendre polynomials, we can represent

𝑃
𝑚

𝑥( ) =  1
𝑚  2𝑚 − 1( ) 𝑥 𝑃

𝑚−1
𝑥( ) +  1 − 𝑚( ) 𝑃

𝑚−2
𝑥( ) ( ) 𝐸

−1
2

−2,1
𝑥( )     (29)
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where and are functions of and some special cases of𝑃
𝑚−1

𝑥( )  𝑃
𝑚−2

𝑥( ) 𝑥

3-parameter Mittag-Leffler function, we can apply all properties of Legendre

polynomials in these special cases of 3-parameter Mittag-Leffler  function

5- Conclusions and future limitations:

The basic objective of this paper was to find the relationship between Legendre

polynomials for all natural numbers and some special cases of 3-parameter𝑃
𝑛

𝑥( )

Mittag-Leffler function by using some properties of Legendre polynomials.
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