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Abstract

The study of generalized derivations are known as a focus of interest for

many researchers and mathematicians in terms of operator theory. It has

developed with the development of links between it and (mathematical)

physics and mechanics, and it still attracts pure and applied

mathematicians to study and analyze it. As well, generalized derivations

are known as an essential component of operator theory, and there are

many substantial and attractive results about their properties.

This thesis aims to study the spectral properties of certain classes of

abnormal operators and apply this study to them through:

1. Verify the Fuglede-Putnam Theorem

2. Realization of band orthogonally and derivation generalized kernel

induced by some abnormal classes of operators including posinoral

factors and (p, k) - quasi-normal operators.

Keywords: (Derivations, Operator theory, Generalized derivations,

Orthogonally, Derivation generalized kernel, Posinoral factors, (p,

k)-quasi-normal operators)
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1. Research Introduction

Suppose B (H) is the set of all constrained linear operators operating on a

complex Hilbert space H. The generalized derivation δ A, B caused by the

operator A, B ∈ B (H) on B (H) is defined by δ A, B (X ) = AX - XB, X ∈ B (H).

If A = B, we indicate δ A, A by δ A and δ A(X) = AX−XA is called the inner

derivation. Generalized derivations are an important component of

operator theory and there are many substantial conclusions about their

properties.

The aim of this research is to attend some results about the

orthogonality of the field and the kernel of generalized derivations. In

addition, to study the properties of some unnatural classes of operators.

Then, link them to the Fuglede-Putnam theory applied to these

unnatural operators (posinormal and (p, k) - cosposonian natural

factors).

In this section, some basic concepts and facts about Hilbert space and

constrained operators are presented with some properties that we need

in the sequel. In addition, we present the spectral characteristics of

compact operators.

5



1.1 Hilbert Spaces

Hilbert Spaces are inner products on a linear space (vector space) H is a

function h., .i from H × H into the field of scalars R (or C), which satisfies

the following properties:

1.〈χ, χ〉 ≥ 0 for all χ∈ H.

2.〈χ, χ〉 = zero iff χ = zero.

3. 〈α x + βy, z〉 = α〈x, z〉 + β 〈y, z〉 for all x, y,z ∈ H and any scalars α, β.

H is noticed to be a real or complex inner product space if h., .i is real or

complex, respectively.

1.1.1 Remark

1. 〈X, αy + βz〉 = 〈x, αy〉 + 〈x, βz〉 = ¯α〈x, y〉 + β¯〈x, z〉 for all x, y, z in H

and any scalars α, β ∈ C.

2. 〈x, 0〉 = 0 for all x ∈ H.

1.1.2 Definition
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An inner product space on H defines a norm on H given by ⎜⎜x ⎜⎜ = 〈x,√

x〉.

1.1.3 Theorem (Cauchy-Schwarz inequality)

For any x, y in an inner product space H, we have

|〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉 or equivalently, |〈x, y〉| ≤ ⎜⎜x ⎜⎜ ⎜⎜y⎜⎜.

1.1.4 Remark

Let H be an inner product space with a norm k.k, then

1. ⎜⎜X ⎜⎜ ≥ 0 for all x in H and ⎜⎜x ⎜⎜ = 0 iff x = 0.

2. ⎜⎜αx⎜⎜ = |α| ⎜⎜x ⎜⎜ for all x ∈ H and α ∈ C.

3. ⎜⎜X + Y ⎜⎜ ≤ ⎜⎜x ⎜⎜ + ⎜⎜y ⎜⎜ for all x, y ∈ H (the triangle inequality).

1.1.5 Definition

A Hilbert space is defined as a total inner product space and every

Hilbert space is a Banach space (i.e., every Cauchy sequence (xn) in H is

approximate with respect to the norm induced by the inner product).

1.1.6 Remark
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The function⎜⎜. ⎜⎜ Is continuous. (i.e., if (xn) is a sequence in a Hilbert

space H such that xn → x in the norm topology, then ⎜⎜xn ⎜⎜ → ⎜⎜x⎜⎜ as n

→ ∞).

1.1.7 Definition

Two vectors x and y in an inner product space H are called orthogonal

(denoted x ⊥ y) if 〈x, y 〉 = zero.

1.1.8 Definition

Let Ω be a subset of a Hilbert space H. Then the orthogonal complement

of Ω (denoted by Ω⊥) is defined by

Ω ⊥ = {y ∈ H: 〈x, y 〉 = zero, for all x ∈ Ω}.

1.1.9 Remark

1. Ω⊥ is a closed subspace of H.

2. Ω ⊆ Ω ⊥⊥.

3. Ω⊥⊥ is the smallest closed subspace that contains Ω.

1.1.10 Theorem
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If Ω is a closed subspace of a Hilbert space H, then H can be written as

the direct sum of Ω and Ω ⊥ denoted as H = Ω ⊕ Ω ⊥ (i.e., each x ∈ H

can be written uniquely as x = x1 + x2 where x1 ∈ Ω and x2 ∈ Ω ⊥).

1.2 Operators on Hilbert Spaces

In this section, the main basic characteristics of Hilbert space operators

will be shown;

1.2.1 Theorem

Suppose H, K and L be Hilbert spaces, it will be as follows:

(a) If A, B ∈ B (H, K), then A + B ∈ B (H, K) and ⎜⎜A + B⎜⎜ ≤ ⎜⎜A ⎜⎜ + ⎜⎜B⎜⎜.

(b) If α ∈ C and A ∈ B (H, K), then α A ∈ B (H, K) and ⎜⎜αA⎜⎜ = |α|⎜⎜A⎜⎜.

(c) If A ∈ B (H, K) and B ∈ B (K, L), then BA = (B ◦ A) ∈ B (H, L) and ⎜⎜BA ⎜⎜≤
⎜⎜B ⎜⎜ ⎜⎜A⎜⎜.

1.2.2 Definition

If A ∈ B (H, K), then B ∈ B (K, H) satisfying the equation 〈Ax, y〉 = 〈x, By〉

for all x ∈ H, y ∈ K is called the adjoint of A and is denoted by B = A∗.

Thus 〈Ax, y〉 = 〈x, A* y〉.
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1.2.3 Theorem

If A, B ∈ B (H) and α ∈ C, then

(a) (A + B)* = A* + B*.

(b) (α A)* = αA*.

(c) (AB)* = B*A*.

(d) A** = (A*) * = A.

(e) ⎜⎜A⎜⎜ = ⎜⎜A*⎜⎜ = ⎜⎜A*A⎜⎜ 1/2 = ⎜⎜AA*⎜⎜ 1/2.

1.2.4 Definition

An operator A ∈ B (H) is invertible if there exists an operator B in B (H)

such that AB = BA = I, where I is the identity operator. B is unique and

called the inverse of A, and is denoted by A−1.

1.2.5 Remark

If A, B ∈ B (H) are invertible, then

1. A−1 is invertible and (A−1) −1 = A.

2. AB is invertible and (AB) −1 = B−1A−1.

3. An = A ◦ A . . . ◦ A is invertible and (An) −1 = A−n = (A−1) n for n = 1, 2,
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4. αA is invertible and (αA) −1 = 1/αA−1 for all α 6≠ 0.

5. A* is invertible and (A∗) −1 = (A−1) ∗.

1.2.6 Definition

If A ∈ B (H), we define

1. The kernel of A by Ker A = {x ∈ H: Ax = zero}.

2. The range of A by Ran A = {Ax: x ∈ H}.

* It can be noticed that Ker A and Ran A are subspaces of H.

1.2.7. Definition

If A ∈ B (H), then:

(a) A is Hermitian (or self-adjoint) if A∗ = A.

(b) A is unitary if A∗A = AA∗ = I.

(c) A is normal if A∗A = AA∗.

(d) A is positive if 〈Aχ, χ〉 ≥ 0 for all χ∈ H.

(e) A is an isometry if ⎜⎜Aχ⎜⎜ = ⎜⎜χ⎜⎜ for all χ∈ H.
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1.2.9 Remark

1. Every positive operator is Hermitian.

2. Hermitian or unitary operators are normal; however, the converse is

not true.

1.3 Compact operators

In this section, we discuss the basic characteristics of compact operators

on a Hilbert space.

1.3.1 Definition

Compact operators are an operators K ∈ B (H) is called compact if for

each sequence (χn) of unit vectors in H; the sequence (Kχn) has a

convergent subsequence. If K ∈ B (H) is compact and (z n) is a bounded

sequence in H, then (Kz n) has a convergent subsequence.

1.3.2 Theorem

Suppose K, L be two compact operators in B (H), then:

(i) K + L is compact.
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(ii) If A ∈ B (H), then KA and AK are compact. (i.e., the set of compact

operators is a two-sided ideal in B (H)).

1.3.3 Theorem

An operator A ∈ B (H) is compact iff A∗ is compact.

1.3.4 Theorem

If {Kn} is a sequence of compact operators in B (H and ⎜⎜Kn – K ⎜⎜ → 0 as n

→ ∞ where K ∈ B (H), then K is compact.

1.3.5 Theorem

An operator A ∈ B (H) is compact iff A∗A is compact iff |A| is compact.

1.3.6 Theorem

(The Hilbert-Schmidt Theorem) let A be a Hermitian compact operator in

B (H). Then there exists an orthonormal basis {φn} for H, so that Aφn =

λnφn and λn → 0 as n → ∞. (i.e., A has an orthonormal basis of

eigenvectors).

2. Normal operators

13



An operator T ∈ B (H) is called normal if T T∗ = T ∗T. This is equivalent to

⎜⎜T ∗χ⎜⎜ = ⎜⎜T χk⎜⎜for all χ∈ H.

In this section, we shall introduce the basic facts about normal

operators, which are going to be used in the sequel.

2.1 Theorem

If T ∈ B (H) is normal, then r (T) = ⎜⎜T⎜⎜

Proof. Suppose S = T ∗T. Since T is normal, then S is self-adjoint and from

the inequality.

⎜⎜Sχ⎜⎜2 = 〈Sχ, Sχ〉 = 〈S2χ, χ〉 ≤ ⎜⎜S 2 ⎜⎜ ⎜⎜χ⎜⎜2

We get ⎜⎜S⎜⎜2 ≤ ⎜⎜S 2⎜⎜. The opposite inequality follows from the fact ⎜⎜S 2

⎜⎜ ≤ ⎜⎜S⎜⎜. ⎜⎜S⎜⎜= ⎜⎜S⎜⎜ 2

Thus, we have the equality ⎜⎜S 2⎜⎜ = ⎜⎜S⎜⎜ 2 and by induction we obtain

⎜⎜S 2m⎜⎜= ⎜⎜S⎜⎜ 2m, ∀m.

2.2 Definition

Let T ∈ B (H), the set W (T):= {〈Tχ, χ〉: ⎜⎜χ⎜⎜ = 1}

Is called the numerical range of T and the numerical radius of T is given

by ω (T):= sup {|λ| : λ ∈ W(T)}.
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An essential fact about W (T) is that it is always convex [17]. Moreover,

the smallest closed convex set containing σ (T), denoted by conv σ (T), is

contained in W (T).

2.3 Proposition

Assume T∍ B (H) is a regular operator. If T χ = λχ,then T ∗χ = λ¯χ

2.2 Classes of operators containing normal operators

Other classes of operators, which contain many of the spectral

properties of normal operators, contain the normal operator class. The

hypo normal operator's class is also included.

2.2.1 Definition

An operator T ∈ B (H) is called hypo normal if T ∗T ≥ T T∗. Equivalently, ⎜⎜T
∗ χ⎜⎜ ≤ ⎜⎜T χ⎜⎜ for all χ ∈ H. In addition, if A* is hypo normal, A∍B (H) is

referred to as co-hypo normal. This condition indicates that a normal

operator is hypo normal.

2.2.2 Proposition

Assume T ∈ B (H) is a hypo normal, then:

1. T − λI is hypo normal,

15



2. If T χ = λχ, then T ∗χ = λχ¯,

3. If T χ= λχ and T y = µy where λ ≠µ, then〈 χ, y〉= zero.

2.2.3 Proposition

Suppose T ∈ B (H) is hypo normal. Then zero ∈ σ (T ∗T − T T∗).

2.2.4 Proposition

If T ∈ B (H) is hypo normal and M ⊂ H is invariant under T, then TM is

hypo normal. If TM is normal, then M reduces T.

2.2.5 Proposition

Assume T ∈ B (H) is a hypo normal, and M = {χ ∈ H: T χ= λχ}. Then TM

returns to normal, and M decreases T.

3. Posinormal operators

In this section, we will go over posinormal and (p, k)-quasiposinormal

operators, which are two new types of operators. Posinormal operators

are a subclass of (p, k)-quasiposinormal operators and a superclass of

normal and hypo normal operators (BEIBA, 2021).
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If A ∈ B(H), then A is posinormal if there is a positive operator P B (H)

such that AA∗ = A∗P A. P(H) denotes the set of all posinormal operators

on H, and P is known as the interrupter (Bonyo, 2011).

The related interrupter P must satisfy the criterion ⎜⎜P⎜⎜ ≥ 1 if the

posinormal operator A is nonzero. Since,

⎜⎜A⎜⎜2= ⎜⎜AA*⎜⎜ = ⎜⎜A*PA⎜⎜ ⎜⎜A*⎜⎜ ⎜⎜P⎜⎜  ⎜⎜A⎜⎜ = ⎜⎜P⎜⎜ ⎜⎜A⎜⎜2 ≤

3.1 Posinormality versus hypo normality

Posinormality does not imply hypo normality, but the Cesaro matrix and

unilateral shift experience suggests the possibility of the contrary

consequence (Bonyo, 2011).

For A, B ∈ B (H) the following propositions are identical:

1. Ran A ⊆ Ran B.

2. AA∗ ≤ λ2 BB∗ for some λ ≥ 0; and

3. There exists T ∈ B (H) such that A = BT.

3.2 Invertibility and translates
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3.2.1 Theorem

Every posinormal operator is invertible.

3.2.2 Corollary

Every invertible operator has the property of being coposinormal.

3.2.3 Corollary

Assume A ∈ B (H), and λ /∈ σ (A) the spectrum of A. Then A−λI is

posinormal.

It is self-evident that if T is hypo normal, then λT and T + λI are also hypo

normal. For posinormal operators, the following theorem considers the

same issues.

3.3 (p, k)-Quasiposinormal operators

For any operator A ∈ B (H), set, as usual |A| = (A∗A) 1/2 and [A∗, A] =

A∗A−AA∗ = |A| 2 − |A∗ | 2 (the self-commutator of A) (A. Bachir, 2016)

1. A is said p-hypo normal if |A| 2p ≥ |A∗ | 2p.

2. A is quasihyponormal if A∗ (A∗A − AA∗) A ≥ 0.

3. A is k-quasihyponormal if A∗k (A∗A − AA∗)Ak ≥ 0

4. A is (p, k)-quasihyponormal if A∗k ((A∗A) p − (AA∗) p )Ak ≥ 0

5. A is posinormal if |A∗ | 2 ≤ c 2 |A| 2 for some c > 0

6. A is p-posinormal if (AA∗ ) p ≤ c 2 (A∗A) p for some c > 0

18



7. A is k-posinormal if A∗k (c 2 |A| 2 − |A∗ | 2) A k ≥ 0 for some c > 0.

8. A is said to be (p, k)-quasiposinormal if A ∗ k (c 2 (A ∗A) p − (AA∗) p) A

k ≥ 0, for some c > 0

4. Fuglede-Putnam's Theorem

A pair (A, B) of operators can be confirmed from the Fuglede-Putnam

theorem, in case A* X = XB ∗ whenever AX = XB for some X in B (H).

In this chapter, the Fuglede-Putnam theorem with generalizations in

Hilbert-Schmidt case will be discussed.

4.1Properties of the Cp classes

Let H be a separable Hilbert space, and {φ n}
∞

n=1 an orthonormal basis

for H. Then for any positive operator A ∈ B (H), define

tr A := ∑∞
n=1 〈Aφn, φn〉

The function tr has the following properties:

1. The quantity tr is independent of the choice {φi} of orthonormal basis.

2. tr (A + B) = tr A + tr B.
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3. tr (λA) = λ tr A for all λ ≥ 0.

4. tr (UAU −1 ) = tr A, for any unitary operator U.

5. If 0 ≤ A ≤ B, then tr A ≤ tr B.

4.2Hilbert-Schmidt operators and case

A compact operator A is said to be a Hilbert-Schmidt operator. The

operator equation AX = XB implies A∗X = XB∗ when A and B are normal

(Fuglede- Putnam’s Theorem). If X is of Hilbert-Schmidt class C2, the

assumptions on A and B can be relaxed: it suffices that A and B∗ be hypo

normal, or that B be invertible with ⎜⎜A ⎜⎜⎜⎜B−1⎜⎜< 1.

4.3 An extension of Fuglede-Putnam Theorem for Posinormal operators

If A ∈ B (H) is hypo normal and B∗ ∈ B (H) is posinormal, then Γ A, B is

posinormal.

4.4 An extension of Fuglede-Putnam Theorem for (p,

k)-quasiposinormal operators

If A is (p, k)-quasiposinormal and B∗ is (p, k)-quasihyponormal, then Γ A, B

is (p, k)-quasiposinormal.
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5. Orthogonally of the range and kernel of the generalized derivation

Suppose E be a complex Banach space. We say that y ∈ E is orthogonal to

x ∈ E if for all complex λ there holds (Bachir, 2012).

⎜χ + λy ⎜ ≥ ⎜⎜χ ⎜⎜

Note that if y is orthogonal toχ, then χ need not be orthogonal to y, so

the orthogonally in this sense is asymmetric.

⎜⎜AX − XA + S ⎜⎜ ≥ ⎜⎜S ⎜⎜

The range of the inner derivation X → δ A, A (X) = AX − XA is orthogonal to

its kernel.

5.1 Generalized Derivations Induced by Hypo normal operators

5.1.1 Theorem

If A ∈ B (H) is a hypo normal operator and N is a normal operator in {A}'

where {A} ' = {X: AX = XA}, then for all λ ∈ σp (N), |λ| ≤ ⎜⎜AX − XA + N⎜⎜
for all X ∈ B (H) (Rashid, 2016).
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5.1.2 Theorem

If A ∈ B (H) is hypo normal, then for any normal operator N ∈ {A}' and

any T ∈ B (H), we have ⎜⎜N ⎜⎜ ≤ ⎜⎜N + AT − T A ⎜⎜

5.1.3 Theorem

If A, B ∈ B (H) such that A is hypo normal and B∗ is hypo normal, then for

all T ∈ Ker(δ A,B) and all X ∈ B(H), ⎜⎜T ⎜⎜ ≤ ⎜⎜T + AX – XB ⎜⎜, that is, Ran(δ

A,B) is orthogonal to Ker (δ A,B).

5.3 Orthogonally and Fuglede-Putnam Property

5.3.1 Definition

The pair of operators (A, B) in B (H) satisfies the (F P) B (H) property if AX =

XB implies A∗X = XB∗ for some X ∈ B (H) (Bachir, 2013).

5.3.2 Theorem

Suppose (A, B) be a pair of operators verifying the (F P) B (H) property,

then Ran δ A, B is orthogonal to Ker δ A, B (A. Bachir, 2016).

5.3.3 Corollary

Ran δ A, B is orthogonal to Ker δ A, B if A and B∗ are hypo normal.
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5.3.4 Theorem

Suppose A, B be operators in B (H) and S ∈ C2 (H). Then ⎜⎜δ A, B (X) + S ⎜⎜2
2

= ⎜⎜δ A, B(X) ⎜⎜ 2
2 + ⎜S⎜⎜ 2

2

5.3.5 Corollary

Suppose A, B be operators in B (H) and S ∈ C2 (H).

And

⎜⎜δ ∗
A,B (X) + S ⎜⎜2

2 = ⎜⎜δ ∗
A,B (X) ⎜⎜2

2 + ⎜⎜S ⎜⎜ 2
2

If and only if either of the following holds (Hoxha, 2013).

1. A is hypo normal and B∗ is an invertible operator.

2. A is p-hypo normal and B∗ is an invertible p-hypo normal.

3. A is k-quasihyponormal and B∗ is an invertible k-quasihyponormal.

4. A is p-quasihyponormal and B∗ is an invertible p-quasihyponormal.

5. A is (p, k)-quasiposinormal and B∗ is an invertible operator.
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6. Research Conclusion

This part of research will include a summary of the main points of linear

operators and applications. Besides, this chapter also will offer further

suggestion for future related studies.

A group of new factors, the hypo-normal and (p, k)-quasiposinormal

class, will be recognized as an extension of the sub-normal, p-post

normal, and b-quasiposinormal class. In addition, the Fuglede-Putnam

theorem for (p, k)-quasiposinormal has been demonstrated in the case

of Hilbert-Schmidt space C2. As a result, it is observed that the range of

generalized derivation caused by these classes of operators is orthogonal

to the kernel.

In future research, it is supposed to find conditions, in order to get the

results of Vogel led-Putnam theorem and orthogonally of Hilbert space.
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